

SEKELS GmbH

- basics and definitions
- alloys
- winding
- contacting
- mechanical aspects
- behavior under nominal current

basics and definitions

- alloys
- winding
- contacting
- mechanical aspects
- behavior under nominal current

Definition: Noise voltages

Common mode (asymmetric noise voltage)

asymmetric

- no potential difference between the conductors.
- common potential difference between ground and conductors.
- occurs mostly at low frequencies.
- attentuation by nominal inductance of a common mode choke

Definition: Noise voltages

Differential mode (symmetric noise voltage)

- potential difference between the conductors
 occurs mostly at high frequencies (>1 MHz).
- attentuation mainly by leakage inductance of common mode choke (if necessary with additional linear choke).

Definition: Noise voltages

Common mode interference (non-symmetric noise voltage)

- noise voltage applies between conductors and ground.
- different potential differences for each conductor.
- attentuation by nominal inductance

Simplified equivalent circuit for common mode chokes

Damping behavior

Basic circuit Common mode choke in filter

Basic circuit Common mode choke in filter

The unfiltered noise voltage is split according to the impedances $Z_{tot.} = Z_{L} + Z_{C}$.

If Z_c is small compared to Z_L the main part of the noise currents are directed to the ground via C_v . This results in a small U_{noise} .

 $\boldsymbol{C}_{\boldsymbol{y}}$ may not be chosen arbitrarily large, so a high choke impedance $\boldsymbol{Z}_{\boldsymbol{L}}$ is desired.

Basic circuit Common mode choke in filter

The symmetric part I_{sym} compensates itself, because it flows through both windings of the choke. The core is not saturated.

The asymmetric part I_{asym} is directed to the ground via Z_{iso} and Z_{Cy} . The voltage divider consisting of Z_L and Z_C limits the saturation current of the choke.

Structure and principle of a common mode choke

Basic structure:

Structure:

- Core (tape-wound-core, ferrite, powder-core etc.)
- Copper winding (litz, round massive wire, flat bar wire)

Principle (simplified):

Winding 1 and 2 are energized in opposite directions.

- CMC offers inductance.
- noise currents are directed to ground via y-capacitor.

Structure and principle of a common mode choke

Basic structure:

Structure:

- Core (tape-wound-core, ferrite, powder-core etc.)
- Copper winding (litz, round massive wire, flat bar wire)

Principle (simplified):

Winding 1 and 2 are energized in opposite directions.

- CMC offers inductance.
- noise currents are directed to ground via y-capacitor.

Saturation of the choke:

high non-symmetric currents lead to a resulting magnetization in the core => saturation

 efficiency of voltage divider (CMC and y-capacitor) reduced drasticially.

Core Saturation

What to do if the choke saturates?

reduce N?

$$\begin{array}{ll} \mbox{Magnetic induction} & \mbox{B} = \mu_0 \cdot \mu_r \cdot \mbox{H} = \mu_0 \cdot \mu_r \cdot \frac{\mbox{N} \cdot \mbox{I}}{\mbox{l}_{Fe}} & \mbox{"Saturation"} \sim \mbox{N} \\ \mbox{Inductance} & \mbox{L} = \mbox{N}^2 \cdot \mbox{A}_{\rm L} = \mbox{N}^2 \cdot \mbox{\mu}_0 \cdot \mbox{\mu}_r \cdot \frac{\mbox{A}_{\rm Fe}}{\mbox{l}_{Fe}} & \mbox{Inductance} \sim \mbox{N}^2 \end{array}$$

 \Rightarrow No improvement, even worse filtering properties! (2)

reduce permeability?

Saturation $\sim \mu_r$

Inductance ~ μ_r

 \Rightarrow Improvement possible, worth a try!

Insertion damping:

$$\left|Z\right| = \sqrt{\left(\operatorname{Re}(Z)\right)^2 + \left(\operatorname{Im}(Z)\right)^2} \approx \sqrt{R_{S,Core}^2 + \left(\omega \cdot L_{Core}\right)^2}$$

Insertion damping:

$$\left| Z \right| = \sqrt{\left(\operatorname{Re}(Z) \right)^2 + \left(\operatorname{Im}(Z) \right)^2} \approx \sqrt{R_{S,Core}^2 + \left(\omega \cdot L_{Core} \right)^2}$$

Insertion damping:

$$\left| Z \right| = \sqrt{\left(\operatorname{Re}(Z) \right)^2 + \left(\operatorname{Im}(Z) \right)^2} \approx \sqrt{R_{S,Core}^2 + \left(\omega \cdot L_{Core} \right)^2}$$

behavior under nominal current

Core alloy

Amorphous & nanocrystalline

Core alloy Advantages and disadvantages of different alloys

Material	Good	Bad
Amorphous	Good saturation, good permeability, thin layers	Magnetostriction, (corrosion)
Nanocrystalline	Highest permeability, good saturation, hardly any magnetostriction, very low losses, different hysteresis loops possible	Not the cheapest
NiFe	High permeability	Low saturation, not the cheapest
Ferrite	Isotropic behavior, cheap	Low saturation, high temperature dependence
Fe- Powder	High saturation, Isotropic behavior	Magnetostriction, corrosion, low permeability
SiFe (laminated)	Highest saturation	Thickness, magnetostriction, corrosion, low permeability

Core alloy

Advantages and disadvantages of different alloys

Material	Good	Bad
Amorphous	Good saturation, good permeability, thin layers	Magnetostriction, (corrosion)
Nanocrystalline	Highest permeability, good saturation, hardly any magnetostriction, very low losses, different hysteresis loops possible	Not the cheapest
NiFe	High permeability	Low saturation, not the cheapest
Ferrite	Isotropic behavior, cheap	Low saturation, high temperature dependence
Fe- Powder	High saturation, Isotropic behavior	Magnetostriction, corrosion, low permeability
SiFe (laminated)	Highest saturation	Thickness, magnetostriction, corrosion, low permeability

VITROPERM[®] is registered trademark of VACUUMSCHMELZE GmbH & Co. KG

VITROPERM® is registered trademark of VACUUMSCHMELZE GmbH & Co. KG

Winding

Advantages and disadvantages of several conductor types

<u>Litz</u>

+ easy to wind

- bad fill factor

+ easy to contact

- bad hf properties $(C_{\mbox{\scriptsize W}})$

Winding

Advantages and disadvantages of several conductor types

Massive round wire

+ good fill factor

- difficult to wind

- + good hf behavior
- winding 1 winding 2
- special contacting neceassary

Winding

Advantages and disadvantages of several conductor types

Flat bar wire

+ high current density

bad fill factor (for round cores)special winding technique

Winding with litz wire I_N = 220 A; L= 2x 290 µH

Winding with massive round wire I_N =500 A; L= 2x 1000 μ H

Winding with flat bar wire

- basics and definitions
- alloys
- winding
- contacting
- mechanical aspects
- behavior under nominal current

New contacting technique I_N =500 A; L= 2x 1000 μ H

New contacting technique I_N=500 A; L= 2x 1000 μH

- basics and definitions
- alloys
- winding
- contacting
- mechanical aspects

behavior under nominal current

New contacting technique I_N =500 A; L= 2x 1000 μ H

- basics and definitions
- alloys
- winding
- contacting
- mechanical aspects
- behavior under nominal current

Inductance vs. nominal current I_N = 300 A / L = 2x 1000 µH

Inductance vs. nominal current I_N = 300 A / L = 2x 1000 µH

Inductance vs. nominal current I_N = 300 A und 500 A / L = 2x 1000 µH

SEKELS – your specialist for...

Special inductive components

and components

Magnetic applications

SEKELS GmbH Dieselstr. 6 61239 Ober-Moerlen Deutschland Tel. +49 6002 9379-0 Fax +49 6002 9379-79 mail@sekels.de www.sekels.de

Your technical contact:

Dr. Swen Graubner Tel: +49 6002 9379-72 SGraubner@sekels.de

All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty or responsibility of any kind, expressed or implied on our part. Published by Sekels GmbH, Germany. All rights reserved.

Abbildungen S. 26 und 27 mit freundlicher Genehmigung der VACUUMSCHMELZE GmbH & Co. KG